Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464096

RESUMO

Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. In male mice, we note that HFHC triggered increases in amyloid beta, an observation not seen in female mice. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.

2.
Front Cell Neurosci ; 17: 895017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006470

RESUMO

Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer's disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic.

3.
J Neurosci ; 40(39): 7559-7576, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32868457

RESUMO

Degeneration of locus ceruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson's disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly nonmotor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine ß-hydroxylase promoter (DBH-hSNCA). These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal DA metabolism, and age-dependent behaviors reminiscent of nonmotor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.SIGNIFICANCE STATEMENT ɑ-Synuclein (asyn) pathology and loss of neurons in the locus ceruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson's disease (PD). Dysregulated norepinephrine (NE) neurotransmission is associated with the nonmotor symptoms of PD, including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, the loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in nonmotor behaviors without inclusions.


Assuntos
Neurônios Adrenérgicos/metabolismo , Gliose/genética , Locus Cerúleo/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Neurônios Adrenérgicos/patologia , Animais , Ritmo Circadiano , Feminino , Gliose/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Locus Cerúleo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Movimento , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , alfa-Sinucleína/genética
4.
Alzheimers Res Ther ; 12(1): 1, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892368

RESUMO

BACKGROUND: Insulin impairment and inflammation are two features common to type 2 diabetes and Alzheimer's disease; however, the molecular and signaling interactions underlying this relationship are not well understood. Mounting evidence point to the associations between the disruption of metabolite processing in insulin impairment and neurodegenerative conditions such as Alzheimer's. Although the brain depends partially on metabolites processed in the periphery, to date, little is known about how soluble tumor necrosis factor signaling (solTNF) impacts integrated peripheral immune and metabolic feedback signals in states of energy overload and insulin insensitivity. METHODS: C57Bl/6J mice were fed a high-fat high-carbohydrate diet (HFHC) for 14 weeks. The brain-permeant biologic XPro1595® was used to block solTNF-dependent pathways. Metabolic and immune alterations were evaluated in the gut, liver, and brain. Behavioral tests were performed. Untargeted metabolomics was carried out in the plasma and liver. RESULTS: HFHC diet promotes central insulin impairment and dysregulation of immune-modulatory gene expressed in the brain. Alteration of metabolites associated with type 2 diabetes and Alzheimer's such as butanoate, glutamate, biopterin, branched-chain amino acids, purines, and proteoglycan metabolism was observed in HFHC-fed mice. solTNF inhibition ameliorates hepatic metabolic disturbances and hepatic and intestinal lipocalin-2 levels, and decreases insulin impairment in the brain and behavioral deficits associated with HFHC diet. CONCLUSIONS: Our novel findings suggest that HFHC diet impacts central insulin signaling and immune-metabolic interactions in a solTNF-dependent manner to increase the risk for neurodegenerative conditions. Our novel findings indicate that selective solTNF neutralization can ameliorate peripheral and central diet-induced insulin impairment and identify lipocalin-2 as a potential target for therapeutic intervention to target inflammation and insulin disturbances in obesogenic environments. Collectively, our findings identify solTNF as a potential target for therapeutic intervention in inflammatory states and insulin disturbances in obesogenic environments to lower risk for AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Síndrome Metabólica/fisiopatologia , Obesidade/fisiopatologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Análise de Variância , Animais , Dieta da Carga de Carboidratos , Masculino , Camundongos Endogâmicos C57BL , Fatores de Risco , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Brain Behav Immun ; 59: 158-172, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27592562

RESUMO

The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Redes Reguladoras de Genes/efeitos dos fármacos , Inflamação/genética , Metabolismo/genética , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Animais , Peso Corporal , Química Encefálica/genética , Metabolismo Energético/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipocalina-2/biossíntese , Lipocalina-2/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...